Publications

Angew. Chem. Int. Ed. 2019, 58, 16815–16819. 

In aqueous electrochemical processes, the pH evolves spatially and temporally, and often dictates the process performance. Herein, a new method for the in‐operando monitoring of pH distribution in an electrochemical cell is demonstrated. A combination of pH‐sensitive fluorescent dyes, encompassing a wide pH range from ≈1.5 to 8.5, and rapid electrochemically coupled laser scanning confocal microscopy is used to observe pH changes in the cell. Using electrocoagulation as an example process, we show that the method provides new insights into the reaction mechanisms. The pH close to the aluminium electrode surface is influenced by the applied current density, hydrolysis of aluminium cations, and gas evolution. Through quantification of the pH at the anode, along with gas analysis, we find that hydrogen is evolved at the anode due to a non‐Faradaic chemical reaction. This leads to increased production of coagulant, which may open new routes to e...

Please reload

© 2018 by The Heyne Group

Created and managed by Nicolas Macia

This site was designed with the
.com
website builder. Create your website today.
Start Now