J. Am. Chem. Soc. 2019, 141 (1), pp 684–692.

Plasmonic nanoparticles can strongly interact with adjacent photosensitizer molecules, resulting in significant alteration of their singlet oxygen (1O2) production. In this work, we report the next generation of metal-enhanced 1O2 nanoplatforms exploiting the lightning rod effect, or plasmon hot spots, in anisotropic (non-spherical) metal nanoparticles. We describe the synthesis of Rose Bengal decorated silica-coated silver nanocubes (Ag@SiO2-RB NCs) with silica shell thicknesses ranging from 5 to 50 nm based on an optimized protocol yielding highly homogeneous Ag NCs. Steady-state and time-resolve 1O2 measurements demonstrate not only the silica shell thickness dependence on the metal-enhanced 1O2 production phenomenon, but also the superiority of this next generation of nanoplatforms. A maximum enhancement of 1O2 of approximately 12-fold is observed with a 10 nm silica-shell, which is amongst the largest 1O2 production metal enhancement fac...

Please reload

© 2018 by The Heyne Group

Created and managed by Nicolas Macia

This site was designed with the
website builder. Create your website today.
Start Now